Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Clin Rev Allergy Immunol ; 2022 Jan 28.
Article in English | MEDLINE | ID: covidwho-2232239

ABSTRACT

The cardiovascular system is frequently affected by coronavirus disease-19 (COVID-19), particularly in hospitalized cases, and these manifestations are associated with a worse prognosis. Most commonly, heart involvement is represented by myocarditis, myocardial infarction, and pulmonary embolism, while arrhythmias, heart valve damage, and pericarditis are less frequent. While the clinical suspicion is necessary for a prompt disease recognition, imaging allows the early detection of cardiovascular complications in patients with COVID-19. The combination of cardiothoracic approaches has been proposed for advanced imaging techniques, i.e., CT scan and MRI, for a simultaneous evaluation of cardiovascular structures, pulmonary arteries, and lung parenchyma. Several mechanisms have been proposed to explain the cardiovascular injury, and among these, it is established that the host immune system is responsible for the aberrant response characterizing severe COVID-19 and inducing organ-specific injury. We illustrate novel evidence to support the hypothesis that molecular mimicry may be the immunological mechanism for myocarditis in COVID-19. The present article provides a comprehensive review of the available evidence of the immune mechanisms of the COVID-19 cardiovascular injury and the imaging tools to be used in the diagnostic workup. As some of these techniques cannot be implemented for general screening of all cases, we critically discuss the need to maximize the sustainability and the specificity of the proposed tests while illustrating the findings of some paradigmatic cases.

2.
Arch Med Sci ; 18(3): 587-595, 2022.
Article in English | MEDLINE | ID: covidwho-1835427

ABSTRACT

Introduction: Identifying SARS-CoV-2 patients at higher risk of mortality is crucial in the management of a pandemic. Artificial intelligence techniques allow one to analyze large amounts of data to find hidden patterns. We aimed to develop and validate a mortality score at admission for COVID-19 based on high-level machine learning. Material and methods: We conducted a retrospective cohort study on hospitalized adult COVID-19 patients between March and December 2020. The primary outcome was in-hospital mortality. A machine learning approach based on vital parameters, laboratory values and demographic features was applied to develop different models. Then, a feature importance analysis was performed to reduce the number of variables included in the model, to develop a risk score with good overall performance, that was finally evaluated in terms of discrimination and calibration capabilities. All results underwent cross-validation. Results: 1,135 consecutive patients (median age 70 years, 64% male) were enrolled, 48 patients were excluded, and the cohort was randomly divided into training (760) and test (327) groups. During hospitalization, 251 (22%) patients died. After feature selection, the best performing classifier was random forest (AUC 0.88 ±0.03). Based on the relative importance of each variable, a pragmatic score was developed, showing good performances (AUC 0.85 ±0.025), and three levels were defined that correlated well with in-hospital mortality. Conclusions: Machine learning techniques were applied in order to develop an accurate in-hospital mortality risk score for COVID-19 based on ten variables. The application of the proposed score has utility in clinical settings to guide the management and prognostication of COVID-19 patients.

3.
Emerg Radiol ; 29(2): 243-262, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1634393

ABSTRACT

Infection with SARS-CoV-2 has dominated discussion and caused global healthcare and economic crisis over the past 18 months. Coronavirus disease 19 (COVID-19) causes mild-to-moderate symptoms in most individuals. However, rapid deterioration to severe disease with or without acute respiratory distress syndrome (ARDS) can occur within 1-2 weeks from the onset of symptoms in a proportion of patients. Early identification by risk stratifying such patients who are at risk of severe complications of COVID-19 is of great clinical importance. Computed tomography (CT) is widely available and offers the potential for fast triage, robust, rapid, and minimally invasive diagnosis: Ground glass opacities (GGO), crazy-paving pattern (GGO with superimposed septal thickening), and consolidation are the most common chest CT findings in COVID pneumonia. There is growing interest in the prognostic value of baseline chest CT since an early risk stratification of patients with COVID-19 would allow for better resource allocation and could help improve outcomes. Recent studies have demonstrated the utility of baseline chest CT to predict intensive care unit (ICU) admission in patients with COVID-19. Furthermore, developments and progress integrating artificial intelligence (AI) with computer-aided design (CAD) software for diagnostic imaging allow for objective, unbiased, and rapid assessment of CT images.


Subject(s)
COVID-19 , Artificial Intelligence , Follow-Up Studies , Humans , Intensive Care Units , Prognosis , SARS-CoV-2 , Tomography, X-Ray Computed/methods
4.
Diagnostics (Basel) ; 11(8)2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1325616

ABSTRACT

Diagnostic imaging is regarded as fundamental in the clinical work-up of patients with a suspected or confirmed COVID-19 infection. Recent progress has been made in diagnostic imaging with the integration of artificial intelligence (AI) and machine learning (ML) algorisms leading to an increase in the accuracy of exam interpretation and to the extraction of prognostic information useful in the decision-making process. Considering the ever expanding imaging data generated amid this pandemic, COVID-19 has catalyzed the rapid expansion in the application of AI to combat disease. In this context, many recent studies have explored the role of AI in each of the presumed applications for COVID-19 infection chest imaging, suggesting that implementing AI applications for chest imaging can be a great asset for fast and precise disease screening, identification and characterization. However, various biases should be overcome in the development of further ML-based algorithms to give them sufficient robustness and reproducibility for their integration into clinical practice. As a result, in this literature review, we will focus on the application of AI in chest imaging, in particular, deep learning, radiomics and advanced imaging as quantitative CT.

5.
Int J Environ Res Public Health ; 18(6)2021 03 11.
Article in English | MEDLINE | ID: covidwho-1125507

ABSTRACT

Since December 2019, the world has been devastated by the Coronavirus Disease 2019 (COVID-19) pandemic. Emergency Departments have been experiencing situations of urgency where clinical experts, without long experience and mature means in the fight against COVID-19, have to rapidly decide the most proper patient treatment. In this context, we introduce an artificially intelligent tool for effective and efficient Computed Tomography (CT)-based risk assessment to improve treatment and patient care. In this paper, we introduce a data-driven approach built on top of volume-of-interest aware deep neural networks for automatic COVID-19 patient risk assessment (discharged, hospitalized, intensive care unit) based on lung infection quantization through segmentation and, subsequently, CT classification. We tackle the high and varying dimensionality of the CT input by detecting and analyzing only a sub-volume of the CT, the Volume-of-Interest (VoI). Differently from recent strategies that consider infected CT slices without requiring any spatial coherency between them, or use the whole lung volume by applying abrupt and lossy volume down-sampling, we assess only the "most infected volume" composed of slices at its original spatial resolution. To achieve the above, we create, present and publish a new labeled and annotated CT dataset with 626 CT samples from COVID-19 patients. The comparison against such strategies proves the effectiveness of our VoI-based approach. We achieve remarkable performance on patient risk assessment evaluated on balanced data by reaching 88.88%, 89.77%, 94.73% and 88.88% accuracy, sensitivity, specificity and F1-score, respectively.


Subject(s)
COVID-19 , Humans , Neural Networks, Computer , Risk Assessment , SARS-CoV-2 , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL